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Surface Transitions of the Semi-Infinite
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We consider the semi-infinite q–state Potts model. We prove, for large q, the
existence of a first order surface phase transition between the ordered phase
and the the so-called “new low temperature phase” predicted in,(26) in which
the bulk is ordered whereas the surface is disordered.
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1. INTRODUCTION AND DEFINITIONS

1.1. Introduction

This paper is the continuation of our study of surface phase transi-
tions of the semi–infinite Potts model(10) (to be referred as paper I).

Semi–infinite models exhibit a great variety of critical phenomena and
we refer the reader to ref. 3 for a review on this subject.

We consider, the q–states Potts model on the half-infinite lattice with
bulk coupling constant J and surface coupling constant K (see (1.1) below
for the definition of the Hamiltonian).

Besides its popularity, this model presents very interesting features.
Namely, in the many component limit q→∞, the mean field theory yields
by looking at the behavior of a bulk and a surface order parameter, and
after a suitable rescaling i.e. by taking the inverse temperature β= ln q, the
phase diagram shown in Figure 1.(26)
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Fig. 1. Mean field diagram borrowed from ref. 26.

In region (I) (respectively (IV)) the bulk spins and the surface spins
are disordered (respectively ordered). In region (II) the surface spins are
ordered while the bulk spins are disordered. The region (III) called new
low temperature phase(26) corresponds to disordered surface spins and
ordered bulk spins: this phase which is also predicted by renormaliza-
tion group scheme, actually does not appear in the Ising case(16). On
the separating line between (I) and (IV) an ordinary transition occurs
whereas so-called extraordinary phase transitions take place on the sepa-
rating lines (I)–(III) and (II)–(IV). Finally, on the two remaining separa-
tion lines (I)–(II) and (III)–(IV), surface phase transitions arise.

In paper I, we studied the high bulk temperature regime showing that
the first surface phase transition between a disordered and an ordered sur-
face while the bulk is disordered holds whenever eβJ − 1<q1/d and q is
large enough.

We are here concerned with the more interesting situation in which
the bulk is ordered. We prove that the second surface transition between
the new low temperature phase and the ordered phase actually occurs
whenever eβJ −1>q1/d , again for large values of q.

The results are based on the analysis of the induced effect of the bulk
on the surface. Intuitively, this effect might be viewed as an external mag-
netic field. When the bulk is completely ordered (a situation that can be
obtained by letting the coupling constant between bulk sites tends to infin-
ity) the system reduces to Potts model in dimension d − 1 with coupling
constant K submitted to a magnetic field of strength J . Such a model
is known to undergo a order-disordered phase transition near the line
βJ (d−1)+βK= ln q.(5) We control here this effect up to eβJ −1>q1/d by
a suitable study of a surface free energy and its derivative with respect to
the surface coupling constant, which contains the thermodynamic of the
surface phase transition under consideration.

The technical tools involved in the analysis are the Fortuin-Kasteleyn
representation,(15) cluster-expansion,(14,19,9,27) Pirogov-Sinai theory,(31) as
already in paper I, but in addition Alexander’s duality.(1,25,23,29)
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The use of Fortuin-Kasteleyn representation is two-fold. It provides
a uniform formulation of Ising/Potts/percolation models for which much
(but not all) of the physical theory are best implemented (see ref. 13 for a
recent review). It can be defined for a wide class of model, making results
easier to extend (see e.g. ref. 21, 29, and 8). This representation appears
in Subsection 2.1 and at the beginning of Subsection 2.2 to express both
partition functions (Z and Q) entering in the definition of the surface free
energy in terms of random cluster model.

Alexander’s duality is a transformation that associates to a subcom-
plex X of a cell–complex K the Poincaré dual complex [K\X]∗ of its
complement. Alexander’s Theorem provides dualities relations between the
cells numbers and Betti numbers of X and those of [K\X]∗ (see e.g., ref.
1 and 25). FK measures on lattices are usually expressed in terms of
the above numbers for a suitably chosen cell-complex associated to the
lattice under consideration. Alexander’s duality provides thus a transfor-
mation on FK configurations (and FK measures)(2). In the case of the
Ising/Potts models this transformation is in fact the counterpart of the
Krammers-Wannier duality (or its generalizations (12,22,23)): applying it
after FK gives the same result than using first Krammers–Wannier dual-
ity and then taking FK representation (29,6). We use Alexander’s duality
first in Subsection 2.2. It allows to write the bulk partition function (Q)
as a system of a gas of polymers interacting through hard-core exclusion
potential. The important fact is that the activities of polymers can be con-
trolled for the values of parameters under consideration. This partition
function can then be exponentiated by standard cluster expansion. This
duality appears again in Subsection 2.3 to obtain a suitable expression of
the partition functions (Z).

Cluster expansion is used again in Subsection 2.3 to express the ratio
Z/Q as a partition function of a system called Hydra model (different
from that of paper I) invariant under horizontal translations.

Pirogov-Sinai theory, the well-known theory developed for translation
invariant systems, is then implemented in Section 3 for the study of this
system. Again cluster expansion enters in the game and the needed Peierls
condition is proven in Appendix.

The above description gives the organization of the paper. We end
this introduction with the main definitions and a statement about the sur-
face phase transition.

1.2. Definitions

Consider a ferromagnetic Potts model on the semi-infinite lattice L =
Z
d−1 × Z

+ of dimension d�3. At each site i = {i1, . . . , id} ∈ L, with iα ∈ Z
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for α=1, . . . , d−1 and id ∈Z
+, there is a spin variable σi taking its values in

the set Q ≡ {0,1, . . . , q − 1}. We let d(i, j)= maxα=1,... ,d |iα − jα| be the dis-
tance between two sites, d(i,�)= minj∈� d(i, j) be the distance between the
site i and a subset �⊂ L, and d(�,�′)= mini∈�,j∈�′ d(i, j) be the distance
between two subsets of L. The Hamiltonian of the system is given by

H ≡−
∑
〈i,j〉

Kij δ(σi, σj ) (1.1)

where the sum runs over nearest neighbor pairs 〈i, j〉 (i.e. at Euclidean dis-
tance dE(i, j)= 1) of a finite subset �⊂ L, and δ is the Kronecker sym-
bol: δ(σi, σj )= 1 if σi = σj , and 0 otherwise. The coupling constants Kij
can take two values according both i and j belong to the boundary layer
L0 ≡{i ∈L | id =0}, or not:

Kij =
{
K>0 if 〈i, j〉⊂L0
J >0 otherwise (1.2)

The partition function is defined by:

Zp(�)≡
∑

e−βHχp� (1.3)

Here the sum is over configurations σ� ∈ Q�, β is the inverse tempera-
ture, and χ

p
� is a characteristic function giving the boundary conditions.

In particular, we will consider the following boundary conditions:

• the ordered boundary condition: χo
� = ∏

i∈∂� δ(σi,0), where the
boundary of � is the set of sites of � at distance one to its complement
∂�={i ∈� :d(i,L\�)=1}.

• the ordered boundary condition in the bulk and free boundary
condition on the surface: χof

� =∏i∈∂b� δ(σi,0), where ∂b�= ∂�∩ (L\L0).

Let us now consider the finite box

�={i ∈L | max
α=1,... ,d−1

|iα|�L, 0� id�M}

its projection �=�∩ L0 = {i ∈� | id = 0} on the boundary layer and its
bulk part 	=�\�={i ∈� |1� id �M}.

The ordered surface free energy, is defined by

go =− lim
L→∞

1
|�| lim

M→∞
ln
Zo(�)

Qo(	)
(1.4)
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Here |�|= (2L+ 1)d−1 is the number of lattice sites in �, and Qo(	) is
the following bulk partition function:

Qo(	)=
∑

exp

βJ ∑
〈i,j〉⊂	

δ(σi, σj )

 ∏
i∈∂	

δ(σi,0)

where the sum is over configurations σ	 ∈ Q	. The surface free energy
does not depend on the boundary condition on the surface, in particu-
lar one can replace Zo(�) by Zof (�) in (1.4). The partial derivative of
the surface free energy with respect to βK represents the mean surface
energy. As a result of this paper we get for q large and q1/d < eβJ −
1< q that the mean surface energy ∂

∂βK
go is discontinuous near βK =

ln
(

1+
(

q

eβJ−1

)1/(d−1)
)

.

Namely, let 〈 · 〉p denote the infinite volume expectation corresponding
to the boundary condition p:

〈f 〉p(βJ,βK)= lim
L→∞,M→∞

1
Zp(�)

∑
σ�∈Q�

f e−βHχp�

defined for local observable f and let e−τ be defined by (3.8) below. As a
consequence of our main result (Theorem 3.5 in Section 3), we have the
following

Corollary 1.1. Assume that q1/d <eβJ −1<q and q is large enough,
then there exists a unique value Kt(β, J, q, d) such that for any n.n. pair
ij of the surface or between the surface and the first layer

〈δ(σi, σj )〉of (βJ,βK)�O(e−τ ) for K�Kt
〈δ(σi, σj )〉o(βJ,βK)�1−O(e−τ ) for K�Kt

In that theorem the ratios of the partition functions entering in the
definition of the surface free energy go (with both Zo(�) and Zof (�)) are
expressed in terms of partition functions of gas of polymers interacting
through a two-body hard-core exclusion potential. For q1/d < eβJ − 1<q
and q large, the associated activities are small according the values of K
namely for K�Kt with the ordered boundary condition and for K�Kt
with the ordered-free boundary condition. The system is then controlled
by convergent cluster expansion.
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2. RANDOM CLUSTER MODELS AND HYDRA MODEL

2.1. The Fortuin–Kasteleyn (FK) Representation

By using the expansion eβKij δ(σi ,σj )=1+ (eβKij −1)δ(σi, σj ), we obtain
the Fortuin–Kasteleyn representation(15) of the partition function:

Zp(�)=
∑

X⊂B(�)

∏
〈i,j〉∈X

(eβKij −1)qN
p
�(X) (2.1)

where B(�)={〈i, j〉 : i ∈�,j ∈�} is the set of bonds with both endpoints
belonging to �, and N

p
�(X) is the number of connected components

(regarding an isolated site i ∈� as a component) of a given X ⊂ B(�).
These numbers depend on the considered boundary condition; introduc-
ing S(X) as the set of sites that belong to some bond of X and C(X|V )
as the number of connected components (single sites are not included) of
X that do not intersect the set of sites V , they are given by:

No
�(X) = |�|− |S(X)∪ ∂�|+C(X|∂�)

Nof
� (X) = |�|− |S(X)∪ ∂b�|+C(X|∂b�)

Hereafter |E| denotes the number of elements of the set E.
We introduce the parameters{

βs ≡ ln(eβK−1)
ln q

βb≡ ln(eβJ−1)
ln q

(2.2)

and let Xs =X∩B(L0), Xb=X\Xs , to get

Zp(�)=
∑

X⊂B(�)
qβs |Xs |+βb|Xb|+N

p
�(X) (2.3)

The ground state diagram of this system is analogous to the diagram
of Fig. 1, by replacing J by βb and K by βs (see paper I).

For the bulk partition function Qo(	), one find that the FK repre-
sentation reads

Qo(	)=
∑

Y⊂B(	)
qβb|Y |+No

	(Y )=qβb|B(	)|
∑

Y⊂B(	)
q−βb|B(	)\Y |+No

	(Y ) (2.4)

where No
	(Y )=|	|− |S(X)∪ ∂	|+C(X|∂	).
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2.2. Low Temperature Expansion of the Bulk Partition Function

We give in this subsection an expansion of the partition function
Qo(	) at “temperature” βb> 1

d
. The expansion is mainly based on a dual-

ity property and we first recall geometrical results on Poincaré and Alex-
ander duality (see e.g., ref. 25, 1, 12 and 18).

We first consider the lattice Z
d and the associated cell-complex L

whose objects sp are called p–cells (0�p�d): 0–cells are vertices, 1–cells
are bonds, 2–cells are plaquettes etc . . . : a p–cell may be represented as
(x;σ1e1, . . . , σpep) where x∈Z

d , (e1, . . . , ed) is an orthonormal base of R
d

and σα =±1, α=1, . . . , d. Consider also the dual lattice

(Zd)∗ =
{
x= (x1 + 1

2
, . . . , xd + 1

2
) :xα ∈Z, α=1, . . . , d

}
and the associated cell complex L∗. There is a one to-one correspondence

sp↔ s∗d−p (2.5)

between p–cells of the complex L and the d−p–cells of L∗. In particular
to each bond s1 corresponds the hypercube s∗

d−1 that crosses s1 in its mid-
dle. The dual E∗ of a subset E⊂L is the subset of element of L∗ that are
in the one-to-one correspondence (2.5) with the elements of E.

We now turn to the Alexander duality in the particular case under
consideration in this paper. Let Y ⊂B(	) be a set of bonds. We define the
A-dual of Y as

Ŷ = (B(	)\Y )∗ (2.6)

As a property of Alexander duality one has∣∣Ŷ ∣∣ = |B(	)\Y | (2.7)

No
	(Y ) = Ncl(Ŷ ) (2.8)

where Ncl(Ŷ ) denote the number of independent closed (d−1)–surfaces of
Ŷ . We thus get

Qo(	)=qβb|B(	)|
∑

Ŷ⊂[B(	)]∗
q−βb|Ŷ |+Ncl(Ŷ ) (2.9)

This system can be described by a gas of polymers interacting
through hard core exclusion potential. Indeed, we introduce polymers as
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connected subsets (in the R
d sense) of (d − 1)-cells of L∗ and let P(	)

denote the set of polymers whose (d − 1)–cells belong to [B(	)]∗. Two
polymers γ1 and γ2 are compatible (we will write γ1 ∼γ2) if they do not
intersect and incompatible otherwise (we will write γ1 �γ2). A family of
polymers is said compatible if any two polymers of the family are com-
patible and we will use P(	) to denote the set of compatible families of
polymers γ ∈P(	). Introducing the activity of polymers by

ϕo(γ )=q−βb|γ |+Ncl(γ ) (2.10)

one has:

Qo(	)=qβb|B(	)|
∑

Ŷ∈P̂(	)

∏
γ∈Ŷ

ϕo(γ ) (2.11)

with the sum running over compatible families of polymers including the
empty-set with weight equal to 1.

We will now introduce multi-indexes in order to write the logarithm
of this partition function as a sum over these multi-indexes (see ref. 28). A
multi-index C is a function from the set P(	) into the set of non negative
integers, and we let suppC={γ ∈P(	) :C(γ )�1}. We define the truncated
functional

0(C)= a(C)∏
γ C(γ )!

∏
γ

ϕo(γ )
C(γ ) (2.12)

where the factor a(C) is a combinatoric factor defined in terms of the con-
nectivity properties of the graph G(C) with vertices corresponding to γ ∈
suppC (there are C(γ ) vertices for each γ ∈ suppC) that are connected by
an edge whenever the corresponding polymers are incompatible). Namely,
a(C)=0 and hence 0(C)=0 unless G(C) is a connected graph in which
case C is called a cluster and

a(C)=
∑

G⊂G(C)
(−1)|e(G)| (2.13)

Here the sum goes over connected subgraphs G whose vertices coincide
with the vertices of G(C) and |e(G)| is the number of edges of the graph
G. If the cluster C contains only one polymer, then a(γ )= 1. In other
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words, the set of all cells of polymers belonging to a cluster C is con-
nected. The support of a cluster is thus a polymer and it is then conve-
nient to define the following new truncated functional

(γ )=
∑

C:suppC=γ
0(C) (2.14)

As proved in paper I, we have the following

Theorem 2.1. Assume that βb >1/d and c0νdq
−βb+ 1

d �1, where νd =
d224(d−1), and c0 =

[
1+2d−2(1+

√
1+23−d)

]
exp

[
2

1+
√

1+23−d

]
, then

Qo(	)= eβb|B(	)| exp

 ∑
γ∈P(	)

(γ )

 (2.15)

with a sum running over (non-empty) polymers, and the truncated func-
tional  satisfies the estimates

|(γ )|� |γ |
(
c0νdq

−βb+ 1
d

)|γ |
(2.16)

The proof uses that the activities satisfy the bound ϕo(γ )�q−(βb−1/d)|γ |
(because Ncl(γ )� |γ |/d) and the standard cluster expansion. The details
are given in ref. 10.

2.3. Hydra Model

We now turn to the partition function Zp(�). We will, as in the pre-
vious subsection, apply Alexander duality. It will turn out that the ratio
Zp(�)/Qo(	) of the partition functions entering in the definition (1.4) of
the surface free energy go can be expressed as a partition function of geo-
metrical objects to be called hydras.

Namely, we define the A-dual of a set of bonds X⊂B(�) as

X̂= (B(�)\X)∗ (2.17)

This transformation can be analogously defined in terms of the occupation
numbers

nb=
{

1 if b∈X
0 otherwise (2.18)
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Fig. 2. A configuration X (full lines) and its A-dual X̂ (dashed lines).

For a configuration n={nb}b∈B(�)⊂{0,1}B(�) we associate the configura-
tions n̂={̂ns}s∈[B(�)]∗ ⊂ {0,1}[B(�)]∗ given by

n̂b∗ =1−nb, b∈B(�) (2.19)

where b∗ is the (d−1)–cell dual of b under the correspondence (2.5); (see
Fig. 2).

For any set of cells X̂ we will use the decomposition X̂= X̂s ∪ Ẑb∪ Ŷb
where X̂s is the set of cells whose dual are bonds with two endpoints on
the boundary surface �, Ẑb is the set of cells whose dual are bonds with
one endpoint on the boundary surface � and one endpoint in the bulk 	
and the remaining Ŷb is the set of cells whose dual are bonds with two
endpoints in the bulk 	. Thus, for the decomposition X=Xs ∪Xb intro-
duced above, we have

∣∣X̂s∣∣ = |B(�)\Xs |∣∣Ẑb∣∣+ ∣∣Ŷb∣∣ = |B(�)\B(�)|− |Xb|

We let B0 be the set of bonds that have an endpoint on the boundary
layer L0 and the other endpoint on the layer L−1 ≡{i ∈L | id =−1} and let
Ñcl(X̂) be the number of independent closed surface of X̂∪B∗

0 : Ñcl(X̂)=
Ncl(X̂∪B∗

0 ). As a result of Alexander duality, one has

No
�(X)= Ñcl(X̂)

Denoting by B1(�) the set bonds that have an endpoint in ∂s� the other
endpoint in L\�, we have furthermore

Nof
� (X)= Ñcl(X̂∪ [B1(�)]

∗)
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These formula lead to the following expression for the partition function
(2.3)

Zp(�)=qβs |B(�)|+βb|B(�)\B(�)|
∑

X̂⊂[B(�)]∗
q−βs |X̂s |−βb(|Ẑb|+|Ŷb|)+Ñcl(X̂)+χ̂p�

where χ̂o
�=0 and χ̂of

� = Ñcl(X̂∪ [B1(�)]∗)− Ñcl(X̂). Notice that this Boltz-
mann weight equals the Boltzmann weight of the bulk partition function
(2.9) for those X̂⊂ [B(	)]∗ i.e., if X̂s = ∅ and Ẑb = ∅. They can thus be
factorized in the ratio of the two partition functions. Namely, we define
hydras as components of (d−1)–cells not completely included in [B(	)]∗.

Definition 2.2. A connected set of (d − 1)–cells δ⊂ [B(�)]∗ (in the
R
d sense) is called hydra in �, if it contains a cell whose dual is a bond

with at least one endpoint on the boundary surface �.

Definition 2.3. Given an hydra δ ⊂ [B(�)]∗, the components of δ
included in [B(�)]∗ are called legs of the hydra, the components included
in [B(	)]∗ are called heads of the hydra and the remaining components
are called bodies of the hydra.

The dual cells of bodies of hydras are bonds between the boundary layer
and the first layer L1 ≡{i ∈L | id =1}; (see Fig. 3).

We let H(�) denote the set of hydras in �. Two hydras δ1 and δ2 are
said compatible (we will write δ1 ∼ δ2) if they do not intersect. A family of
hydras is said compatible if any two hydras of the family are compatible
and we let H(�) denote the set of compatible families of hydras δ∈H(�).

Clearly, a connected subset of cells included in [B(�)]∗ is either a
hydra δ∈H(�) or a polymer γ ∈P(	) (defined in Subsection 2.2). There-
fore any subset of [B(�)]∗ is a disjoint union of a compatible family of
hydras X̂∈H(�) with a compatible family of polymers Ŷ ∈P(	).

Fig. 3. A hydra, in two dimensions (a dimension not considered in this paper), with 5 feet
(components of full lines), 2 bodies (components of dashed lines), and 3 heads (components
of dotted lines).
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The partition function Zp(�) given by (2.1) reads thus:

Zp(�) = qβs |B(�)|+βb|B(�)\B(�)|

×
∑

X̂∈H(�)

q−βs |X̂s |−βb(|Ẑb|+|Ŷb|)+Ñcl(X̂)+χ̂p�
∑

Ŷ∈P(	):Ŷ ∼ X̂

∏
γ∈Ŷ

ϕo(γ )

(2.20)

where the compatibility Ŷ ∼ X̂ means no component of Ŷ is connected
with a component of X̂.

According to Subsection 2.2, the last sum in the RHS of the above
formula can be exponentiated as: exp

{∑
γ∈P(	);γ ∼X (γ )

}
. Hence divid-

ing the above partition function by the partition function Qo(	) we get
by taking into account Theorem 2.1:

�p(�) ≡ Zp(�)

Qf (	)
=qβs |B(�)|+βb(|B(�)|−|B(�)|−|B(	)|) (2.21)

×
∑

X̂∈H(�)

q−βs |X̂s |−βb(|Ẑb|+|Ŷb|)+Ñcl(X̂)+χ̂p� exp

−
∑

γ∈P(	);γ � X̂

(γ )


Hereafter the incompatibility γ �X means that no component of X̂

is connected with δ.
�p(�) is thus the partition function of a gas of hydras X̂={δ1, . . . , δn}

interacting through hard-core exclusion potential and through a long
range interaction potential (decaying exponentially in the distance under
the hypothesis of Theorem 2.1) defined on the polymers of the bulk.

If we neglect this long range potential, and if we moreover restrict to
consider only hydras without head, the system of hydras will reduce itself
to a (d− 1) Potts model with two-body interaction coupling K and mag-
netic field J (i.e., with formal Hamiltonian H = −∑〈i,j〉⊂L0

Kδ(σi, σj )−∑
〈i,k〉,i∈L0,k∈L1

Jδ(σi,0) ). This model undergoes a temperature driven first
order phase transition, whenever q is large enough and d�3.(5) We will
show that it is also the case for the hydra model (2.21) implementing
the fact that the heads of hydras modify only weakly their activities and
that the long range interaction potential decays exponentially (the needed
assumptions are close to those of Theorem 2.1). To this end it is conve-
nient to first rewrite this potential in terms of a model of aggregates.

Let us introduce the (real-valued) functional

�(γ )= e−(γ )−1 (2.22)
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defined on polymers γ ∈ P(	). An aggregate A is a family of polymers
whose support, suppA=∪γ∈Aγ , is connected. Two aggregates A1 and A2
are said compatible if suppA1 ∩ suppA2 =∅. A family of aggregates is said
compatible if any two aggregates of the family are compatible and we will
use A(	) to denote the set of compatible families of aggregates. Introduc-
ing the statistical weight of aggregates by

ω(A)=
∏
γ∈A

�(γ ) (2.23)

we then get:

exp

−
∑

γ∈P(	);γ �X

(γ )

 =
∏

γ∈P(	);γ �X

(1+�(γ ))

=
∑

A∈A(	)

∏
A∈A;A�X

ω(A) (2.24)

where A�X means that every polymer of the aggregate A is incompatible
with X. Since the support of aggregates is a connected set of (d−1)–cells,
i.e., a polymer, it is convenient (as it was done for clusters in Subsection
2.3) to sum the statistical weights (2.23) over aggregates with same sup-
port. We thus define the weight

ψ(γ )≡
∑

A:suppA=γ
ω(A) (2.25)

with A�X, to get

�p (�)=qβs |B(�)|+βb(|B(�)|−|B(�)|−|B(	)|)

×
∑

X̂∈H(�)

q−βs |X̂s |−βb(|Ẑb|+|Ŷb|)+Ñcl(X̂)+χ̂p�
∑

Ŷ∈P(	)

∏
γ∈Ŷ γ � X̂

ψ(γ ) (2.26)

The system is thus described by two families: a compatible family of
hydras (a subset of [B(L)]∗) and a compatible family of polymers (a subset
of
[
B(L\L0)

]∗) each of these polymers being incompatible with the family
of hydras.

We will define in the next subsection the diluted partition functions
for our system. This partition function differs only from the “physical”
partition function (2.26) by a boundary term and thus both partition func-
tions lead to the same free energy. The recurrence relations of Lemma 3.1
below, allow to expand the diluted partition functions in term of matching
signed contours interacting through hard-core exclusion potential.
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2.4. Diluted Partition Functions

Note first that even though our model is defined on a d–dimensional
box � it has a (d−1)–dimensional structure and the highest order of the
logarithm of partition functions behaves like O(|�|). It will be convenient
to consider � as a set of lines and its dual �∗ as a set of columns.

We let a line L(x) be a cylinder set of sites of L whose projection on
the boundary layer is the site x and whose height is less than a given num-
ber M: L(x)={i∈L (i1, . . . , id−1)=x∈L0, id�M}. We let LM be the set of
all such lines. The dual of a line is called column and is thus a set of d–
cells of the complex L∗. For �⊂LM , we let �=�∩L0, be its projection
on the boundary layer, 	=�\� and ‖�∗‖ = |�| be the number of col-
umns of �∗ (or of lines of �).

Consider a site x ∈ L and its dual d–cell x∗. We shall use E(x∗) to
denote the set of (d − 1)–cells of the boundary of x∗ (there are the dual
cells of the bonds whose x is an endpoint). For a set of d–cells D, we let
E(D)=∪x∗∈DE(x∗) be the union of the boundaries of the d–cells of D.

Next, it can easily be checked that the configuration (X̂o = ∅, Ŷ = ∅)
and the configuration (X̂of = [B(L0)\B(L\L0)

]∗
, Ŷ =∅) are ground states

of the system.
We will use Hp(�) to denote the set of compatible families of hydras

defined on E(�∗) ∩ [B(L)]∗ that coincide with X̂p on E([∂�]∗), and use
Pdil (	) to denote the compatible families of polymers defined on E(�∗)\
(E(�∗)∪E([∂�]∗).

For such configurations the Boltzmann weight in (2.26) reads

q−βs |X̂s |−βb(|Ẑb|+|Ŷb|)+Ñcl(X̂)

since for those X̂∈Hof (�) one has Ñcl(X̂∪ [B1(�)]∗)= Ñcl(X̂).
We define, for (any) volume �⊂L, the diluted Hamiltonian of a con-

figuration X̂= X̂p a.e., as:

H dil
� (X̂)=

∑
x∗∈�∗

ex∗(X̂)− Ñcl(X̂∩E(�∗)) (2.27)

where the energy per cell is defined by

ex∗(X̂)= βs

2

∣∣X̂s ∩E(x∗)
∣∣+βb ∣∣Ẑb ∩E(x∗)

∣∣ if x ∈L0

for the d–cells of the surface and by
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ex∗(X̂)= βb

2

∣∣Ŷb ∩E(x∗)
∣∣ if x ∈L\L0

for the d–cells of the bulk.
The diluted partition function is defined by

�dil
p (�)=

∑
X̂∈Hp(�)

q−Hdil
� (X)

∑
Y∈Pdil(	)

∏
γ∈Yγ �X

ψ(γ ) (2.28)

Up to a boundary term O(∂�) one has ln�p(�)= [(d−1)βs +βb]‖�‖
ln q+ ln�dil

p (�), hence

− lim
�↑L

1
‖�‖ ln�dil

p (�)=go + [(d−1)βs +βb] ln q (2.29)

where �↑L means that we take first the limit M→∞ and then the limit
� ↑L0 in the van-Hove or Fisher sense.(30)

Notice that the diluted Hamiltonian on ground states reads on set of
columns �∗ ⊂L

∗
M :

H dil
� (X̂p)= ep‖�∗‖ (2.30)

with the specific energies

eo = 0

eof = (d−1)βs +βb−1 (2.31)

3. SURFACE TRANSITION IN THE BULK LOW TEMPERATURE

REGIME

3.1. Contours and Peierls Estimates

We first define the contours of our system.
Let �⊂LM , �∗ its dual set and (X̂, Ŷ ) be a configuration of our sys-

tem in �: X̂∈Hp(�), Ŷ ∈Pdil(�), Y �X.
A d–cell x∗ ∈�∗ is called p-correct, if X̂ coincides with the ground

state X̂p on the (d − 1)–cells of the boundary E(x∗) of x∗ and the inter-
section Ŷ ∩E(x∗)=∅. A column is called p-correct if all the d–cells of the
column are p-correct.

Columns and d–cells that are not p-correct are called incorrect.
The set of incorrect columns of a configuration (X̂, Ŷ ) is called

boundary of the configuration (X̂, Ŷ ).
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A triplet � = {supp�, X̂(�), Ŷ (�)}, where supp� is a maximal con-
nected subset of the boundary of the configuration (X̂, Ŷ ) called support
of �, X̂(�) the restriction of X̂ to the boundary E(supp�) of the sup-
port of �, and Ŷ (�) the restriction of Ŷ to E(supp�), is called contour
of the configuration (X,Y ). Hereafter a set of d–cells is called connected
if the graph that joins all the dual sites i, j of this set with d(i, j)�1 is
connected.

A triplet �={supp�, X̂(�), Ŷ (�)}, where supp� is a connected set of
columns is called contour if there exists a configuration (X̂, Ŷ ) such that �
is a contour of (X̂, Ŷ ). We will use |�| to denote the number of incorrect
cells of supp� and ‖�‖ to denote the number of columns of supp�.

Consider the configuration having � as unique contour; it will
be denoted (X̂�, Ŷ �). Let Lp(�) be the set of p-correct columns of
L

∗
M\supp�. Obviously, either a component of Lo(�) is infinite or a com-

ponent of Lof (�) is infinite. In the first case � is called contour of the
ordered class or o-contour and in the second case it is called of-con-
tour. When � is a p-contour (we will let �p denote such contours) we
use Ext� to denote the unique infinite component of Lp(�); this compo-
nent is called exterior of the contour. The set of remaining components
of Lp(�) is denoted Intp� and the set Lm�=p(�) is denoted Intm�. The
union Int�= Intf� ∪ Intfo� is called interior of the contour and V (�)=
supp�∪ Int�.

Two contours �1 and �2 are said compatible if the union of their sup-
ports is not connected. They are mutually compatible external contours if
V (�1)⊂Ext�2 and V (�2)⊂Ext�1.

We will use G(�p) to denote the set of configurations having �p

as unique external contour. The crystal partition function is then defined
by:

�cr(�p)=
∑

(X̂,Ŷ )∈G(�p)
q

−Hdil
V (�p)

(X̂)
∏
γ∈Y

ψ(γ ) (3.1)

Lemma 3.1. The following set of recurrence equations holds:

�dil
p (�)=

∑
{�p1 ,... ,�

p
n }ext

q−ep‖Ext‖
n∏
i=1

�cr(�
p
i ) (3.2)

Here the sum is over families {�p1 , . . . , �pn }ext of mutually compatible
external contours in � (supp�pi ⊂�Int ={i ∈� :d(i,LM\�)>1}), ‖Ext‖=
‖�∗‖−∑i ‖V (�pi )‖ where ‖V (�pi )‖ is the number of columns of V (�pi );
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�cr(�p)=�(�p)
∏

m∈{o,of}
�dil
m (Intm�

p) (3.3)

where:

�(�p)≡q−Hdil
supp�p (X

�p )
∏
γ∈Y�p

ψ(γ ) (3.4)

Proof. We have only to observe that for any X̂∈Hp(�)

H dil
� (X̂)=

∑
�

H dil
supp�(X̂

�)+
∑
p

ep‖Lp(X̂)∩�∗‖ (3.5)

where the sum is over all contours of the boundary of the configuration
(X̂, Ŷ =∅) and ‖Lp(X̂)∩�∗‖ is the number of p–correct columns inside �
of this configuration.

Lemma 3.1 gives the following expansion for the partition function

�dil
p (�)=q−ep‖�‖ ∑

{�p1 ,... ,�
p
n }comp

n∏
i=1

z(�
p
i ) (3.6)

where the sum is now over families of compatibles contours of the same
class and

z(�
p
i )=�(�p)qep‖�p‖�dil

m (Intm�p)

�dil
p (Intm�p)

(3.7)

where ‖�p‖ is the number is the number of columns of supp�p and
m �=p.

To control the behavior of our system, we need to show Peierls con-
dition, that means that �(�p)qep‖�p‖ has good decaying properties with
respect to the number of incorrect cells of supp�p. We use in fact the
modified Peierls condition introduced in ref. 20 where �(�p)qep‖�p‖ is
replaced by �(�p)qe‖�p‖ with e=min (eo, eof ).

Let

e−τ =
(

2(3d−2)q
− 1−βb

2(d−1) +3c2d+1ν3
dq

1
d
−βb

)‖S‖ 1

1−6cν3
dq

1
d
−βb

(3.8)

where c=8e(e−1)c0 and νd =d224(d−1). We have the following
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Proposition 3.2. Let S⊂L
∗
M be a finite connected set of columns,

assume that 1
d
<βb <1 and 6cν3

dq
− 1
d
+βb <1, then for all βs ∈R:

∑
�p :supp�p=S

∣∣�(�p)∣∣qe‖�p‖�e−τ‖S‖ (3.9)

where ‖S‖ is the number of columns of S.

The proof is postponed to the Appendix.
The recurrence equations of Lemma 3.1 together with the Peierls esti-

mates (3.9) allow to study the states invariant under horizontal translation
(HTIS) of the hydra system as in paper I. This is the subject of the next
subsection.

3.2. Diagram of Horizontal Translation Invariant States

To state our result, we first define the functional

Kp(S)=
∑

�p :supp�p=S
z(�p) (3.10)

Consider the partition function �dil
p (�) (3.6) and for a compatible family{

�
p

1 , . . . , �
p
n

}
comp of p–contours, denote by S1, . . . , Sn their respective sup-

ports. By summing over all contours with the same support this partition
function can be written as the partition function of a gas of polymers
S with activity Kp(S) = ∑

�p :supp�p=S
z(�p) interacting through hard-core

exclusion potential:

�dil
p (�)=q−ep‖�‖ ∑

{S1,... ,Sn}comp

n∏
i=1

Kp(Si) (3.11)

Here {S1, . . . , Sn}comp denotes compatible families of polymers, that is
d(S∗

i , S
∗
j )> 1 for every two Si and Sj in the family: recall that by defini-

tions of contours a polymer S is a set of columns whose graph that joins
all the points of the dual of the columns of S at distance d(i, j)�1 is con-
nected.

Next, we introduce the so-called truncated contour models defined
with the help of the following
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Definition 3.3. A truncated contour functional is defined as

K ′
p(S)=

{
Kp(S) if ‖Kp(S)‖�e−α‖S‖
0 otherwise

(3.12)

where ‖Kp(S)‖=∑�p :supp�p=S |z(�p)|, and α>0 is some positive param-
eter to be chosen later (see Theorem 3.5 below).

Definition 3.4. The collection {S,p} of all p-contours �p with sup-
port supp�p=S is called stable if

‖Kp(S)‖�e−α‖S‖ (3.13)

i.e., if Kp(S)=K ′
p(S).

We define the truncated partition function �′
p(�) as the partition

function obtained from �dil
p (�) by leaving out unstable collections of con-

tours, namely

�′
p(�) = q−ep‖�‖ ∑

{�p1 ,... ,�
p
n }comp

′ n∏
i=1

z(�
p
i ) (3.14)

= q−ep‖�‖ ∑
{S1,... ,Sn}comp

n∏
i=1

K ′
p(Si) (3.15)

Here the sum goes over compatible families of stable collections of
contours. Let

hp=− lim
�→L

1
‖�‖ ln�′

p(�) (3.16)

be the metastable free energy of the truncated partition function �′
p(�).

For α large enough, the thermodynamic limit (3.16) canbe controlled
by a convergent cluster expansion. We conclude the existence of hp,
together with the bounds

e−κe
−α |∂s�| � �′

p(�)e
hp‖�‖�eκe−α |∂s�| (3.17)∣∣hp− ep ln q

∣∣ � κe−α (3.18)

where κ = κcl(χ
′)2 where κcl =

√
5+3
2 e

2√
5+1 is the cluster constant(19) and

κ ′ =3d−1 −1; ∂s�= ∂�∩L0 in the way defined in Subsection 1.2.
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Theorem 3.5. Assume that 1/d < βb < 1 and q is large enough so
that e−α ≡ e−τ+2κ ′+3 < 0.7

κκ ′ , then there exists a unique βts = 1
d−1 (1 − βb)+

O(e−τ ) such that:

(i) for βs =βts

�dil
p (�)=�′

p(�)

for both boundary conditions p=o and p=of, and the free energy of the
hydra model is given by gf + [(d−1)βs +βb] ln q=ho =hof

(ii) for βs >βts

�dil
o (�)=�′

o(�)

and go + [(d−1)βs +βb] ln q=ho<hof

(iii) for βs <βts

�dil
of (�)=�′

of (�)

and gof + [(d−1)βs +βb] ln q=hfo<hf

Proof. Starting from the Peierls estimates given in Proposition 3.2
and the definitions of this subsection the proof is the same as that of
Theorem 3.5 in paper I. Let us only recall that to exponentiate the parti-
tion function Zp(�)=qep‖�‖�′

p(�) we define the truncated functional T

associated to K ′
p

T (X)= a(X)∏
γ X(S)!

∏
S

K ′
p(S)

X(S) (3.19)

defined on the multi-indexes X associated to the polymers (a multi-index
being a function from the set of polymers into the set of non negative
integers, and a(X) is defined as in (2.13)). The number of polymers S
with number of columns ‖S‖ = n and containing a given column can be
bounded by νn where ν= (3d−1 −1)2 as in paper I: this is because the cho-
sen definition for connectedness of columns here is the same as that for
connectedness of lines in paper I.

As a result of the standard cluster expansion,(19,27) we get for
κe−α <1
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Zp(�)= exp

{∑
X

T (X)

}

where the sum is over multi-indexes whose support suppX={S :X(S)�1}
belongs to �. The series

∑
X:suppX �L

∣∣T (X)∣∣ is absolutely convergent and
satisfies the bound ∑

X:suppX �L

∣∣∣T (X)∣∣∣�κe−α (3.20)

Let us introduce the Gibbs states 〈 · 〉p, associated to the boundary
conditions p∈{f;of}. Theorem above show also that at βs =βts

〈nb〉o = 1−O(e−τ ) (3.21)

〈nb〉of = O(e−τ ) (3.22)

for any bond b of the boundary layer and any bond b between the bound-
ary layer and the first layer.

Indeed by the correspondence (2.19) these equations are equivalent to

〈 n̂b∗ 〉o = O(e−τ ) (3.23)

〈 n̂b∗ 〉of = 1−O(e−τ ) (3.24)

for the dual cells of the bonds under consideration. By definition of con-
tours, with ordered (o) boundary conditions, any such cells are occupied
only if there is an ordered contour surrounding it and that the correla-
tion functions are controlled by the contour model cluster expansion. With
ordered-free (of) boundary conditions, such cells are empty only if there is
a (of)–contour surrounding it and again the correlations are controlled by
cluster expansion. Obviously, the relation (3.23) holds true for any βs�βts
while the relation (3.24) hold true for any βs�βts .

This shows in particular that the derivative ∂
∂K
go of the free energy

go with respect to the surface coupling constant K is discontinuous near

K=β−1 ln
(

1+
(

q

eβJ−1

)1/(d−1)
)

.

APPENDIX: PROOF OF PROPOSITION 3.2

We begin the proof by considering contours � = {
supp�, X̂�, Ŷ �

}
(where

{
X̂�, Ŷ �

}
is the configuration having � as unique contour) with-

out polymers, i.e., Ŷ �=∅. We have the decomposition X̂�= X̂�s ∪ Ẑ�b ∪ Ŷ �b
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where X̂�s = X̂�∩ [B(L0)]∗, Ŷ �b = X̂�∩[B(L\L0)
]∗, and Ẑ�b = X̂�\(X̂�s ∪ Ŷ �b ).

A d–cell x∗ ∈L
∗
0 will be called regular if the (d−1)–cells of its bound-

ary that belong to the boundary layer are either all empty or all occupied.
It will be called irregular otherwise. We denote by R0(�) the set of correct
d–cells of the contour �: R0(�)={x∗ ∈ L0 : |X� ∩ E(x∗)| equals 0 or 2d −
1}. We let I0(�) be the set of incorrect d–cells of the contour � : I0(�)={
x∗ ∈L0 : 1�

∣∣X� ∩E(x∗)
∣∣�2(d−1)

}
.

Lemma A.1.

�(�)qe‖�‖�q− 1−βb
2(d−1) |I0(�)|−

(
βb− 1

d

)∣∣Y�b ∣∣ (A.1)

Proof. By Lemma 3.1 and definition (2.27), one has

�(�)=q
∑
x∗∈R0(�)∪I0(�) ex∗ (X̂)−βb|Ŷb|+Ñcl(X̂)

where ex∗(X̂)=−βs
2

∣∣X̂s ∩E(x∗)
∣∣−βb ∣∣Ẑb ∩E(x∗)

∣∣ and to simplify formulae
we put hereafter X̂, X̂s , Ẑb and Ŷb instead of X̂�, X̂�s , Ẑ�b and Ŷ �b . We
define

N cl(X̂s ∪ Ẑb)= Ñcl(X̂s ∪ Ẑb)−
∑

x∗∈R0(�)

Ñcl(X̂∩E(x∗))

as the number of independent closed surfaces that are not boundaries of
an occupied d–cell of the surface. This leads to the decomposition

�(�)qe‖�‖ =q−As (�)−Bs (�)−Ab(�p) (A.2)

where

As(�) =
∑

x∗∈R0(�)

[
ex∗(X̂)− e− Ñcl(X̂∩E(x∗))

]
(A.3)

Bs(�) =
∑

x∗∈I0(�)

[
ex∗(X̂)− e]−N cl(X̂s ∪ Ẑb) (A.4)

Ab(�) = βb
∣∣Ŷb∣∣− [Ñcl(X̂)− Ñcl(X̂s ∪ Ẑb)

]
(A.5)

Clearly

As(�)�0 (A.6)
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Indeed the regular d–cells are either empty in which case the term
inside brackets in (A.3) equals

−e=−min {eo =0; eof = (d−1)βs +βb−1}

or they are occupied in which case this term equals

(d−1)βs +βb−1−min {eo =0; eof = (d−1)βs +βb−1}

Let us now bound Bs(�). We first notice that for incorrect d–cells x∗
of the surface,

ex∗(X̂)− e = βs

2

∣∣X̂s ∩E(x∗)
∣∣+βb ∣∣Ẑb ∩E(x∗)

∣∣− eofχ

(
βs�

1−βb
d−1

)
� 1−βb

2(d−1)

∣∣X̂s ∩E(x∗)
∣∣+βb ∣∣Ẑb ∩E(x∗)

∣∣ (A.7)

Furthermore the number N cl(X̂s ∪ Ẑb) may be bounded as

N cl(X̂s ∪ Ẑb)�
∑

x∗ :d−1�|X̂∩E(x∗)|�2(d−1)−1

|Ẑb∩E(x∗)|=1

2|X̂∩E(x∗)|
22(d−1)

�
∑

x∗ :d−1�|X̂∩E(x∗)|�2(d−1)−1

|Ẑb∩E(x∗)|=1

1
2

(A.8)

If an incorrect site of the surface is such that
∣∣Ẑb ∩E(x∗)

∣∣= 0, then
necessarily

∣∣X̂s ∩E(x∗)
∣∣=1 and thus such site gives a contribution

1−βb
2(d−1)

to Bs(�). Let us now consider those incorrect d–cells for which∣∣Ẑb ∩E(x∗)
∣∣=1. Starting from (A.7) we get for such cells

ex∗(X̂)− e � βb+ 1−βb
2(d−1)

∣∣X̂s ∩E(x∗)
∣∣

= 1−βb
2(d−1)

+βb
2(d−1)+1− ∣∣X̂s ∩E(x∗)

∣∣
2(d−1)

+
∣∣X̂s ∩E(x∗)

∣∣−1

2(d−1)

� 1−βb
2(d−1)

+ 1
d

2(d−1)+1− ∣∣X̂s ∩E(x∗)
∣∣

2(d−1)
+
∣∣X̂s ∩E(x∗)

∣∣−1

2(d−1)

= 1−βb
2(d−1)

+
∣∣X̂s ∩E(x∗)

∣∣+1

2d
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where for the second inequality we take into account that
∣∣X̂s ∩E(x∗)

∣∣
�2(d−1) and βb�1/d. When furthermore

∣∣X̂s ∩E(x∗)
∣∣�d−1, one infer

ex∗(X̂)− e� 1−βb
2(d−1)

+ 1
2

and it thus follows from (A.4), (A.8), and (A.7), that each incorrect cell
with

∣∣Ẑb ∩E(x∗)
∣∣= 1, gives also a contribution at least 1−βb

2(d−1) to Bs(�).
Therefore

q−Bs (�)�q− 1−βb
2(d−1) |I0(�)| (A.9)

Consider finally, the quantity Ab(�). We will prove the inequality

Ñcl(X̂)− Ñcl(X̂s ∪ Ẑb)�
∣∣Ŷb∣∣
d

(A.10)

Notice first the obvious inequality

Ñcl(X̂)− Ñcl(X̂s ∪ Ẑb)�Ncl(Ŷb ∪B∗
01)

where B01 is the set of bonds between the boundary layer and the first
layer and Ncl(Ŷb ∪ B∗

01) is the number of independent closed surface of
Ŷb ∪B∗

01. The number
∣∣Ŷb∣∣ can be written

∣∣Ŷb∣∣= ∑
x∗∈[L\L0]∗:|Ŷb∩E(x∗)|�1

∣∣Ŷb ∩E(x∗)
∣∣

2

(because each (d−1)–cell belongs to the boundary of two d–cells).
For the configurations Ŷb that do not hit B∗

01 (meaning that there
are no cell of Ŷb connected with B∗

01 in the R
d sense) we get immediately

(A.10) as already used in the proof of Theorem 2.1: closed surfaces of
minimal area are d–cells and the number of (d−1)–cells in the boundary
of d–cell equals 2d.

For the configurations Ŷb that do hit B∗
01, notice first that

∣∣Ŷb∣∣ can be
written

∣∣Ŷb∣∣= ∑
x∗∈[L\L0]∗:|Ŷb∩E(x∗)|�2

∣∣Ŷb ∩E(x∗)
∣∣

2
+

∑
x∗∈[L\L0]∗:|Ŷb∩E(x∗)|=1

∣∣Ŷb ∩E(x∗)
∣∣

2

(A.11)
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Since Ŷb is finite, the set of cells with
∣∣Ŷb ∩E(x∗)

∣∣= 1 is non empty
and furthermore for any (d−1)–cell of B∗

01 there exists a d–cell x∗ above
it such that

∣∣Ŷb ∩E(x∗)
∣∣=1 that can not contribute to Ncl(Ŷb∪B∗

01). Now
closed surfaces of minimal area are d–cells having in their boundary 2d−1
cells of Ŷb and a cell of B∗

01. Thus for such surfaces we have a contribution
d−1/2 coming from the first term of the RHS of (A.11) and a contribu-
tion 1/2 coming from the second term.

This implies (A.10) giving

q−Ab(�)�q−
(
βb− 1

d

)
|Ŷb| (A.12)

which in turn implies the lemma by taking into account (A.2), (A.6) and
(A.9).

Considering still contours �={supp�,X�,Y�
}

without polymers, i.e.,
(Y� =∅) we have the

Lemma A.2. Assume that βb > 1
d

, and 2νdq
1
d
−βb <1, then

∑
�:supp�=S

�(�)qe‖�‖�
(

2(3d−2)q

1−βb
2(d−1) − +2d+1νdq

1
d
−βb

)‖S‖
1

1−2νdq
1
d
−βb
(A.13)

which shows that, whenever q is large enough, the Peierls condition holds
true for the class of contours without polymers.

Proof. First, observe that for contours � with support supp�=S and
number of irregular cells of the boundary layer |I0(�)|= k one has

∣∣Ŷb∣∣=
|δ1|+ · · ·+ |δm|�‖S‖−k. Therefore,

∑
�:supp�=S

�(�)qe‖�‖ �
∑

0�k�‖S‖

∑
�p :|I0(�)|=k

q
− 1−βb

2(d−1) kq(
1
d
−βb)|Ŷb|

�
∑

0�k�‖S‖

( ‖S‖
k

)
2(2d−1)k2‖S‖−kq− 1−βb

2(d−1) k (A.14)

×
∑

n�2‖S‖

∑
δ1�s1,... ,δn�sn

|δ1|+...+|δn|�‖S‖−k

∑
s1,... ,sn

sα∈S;sα�B∗
01

m∏
j=1

q

(
1
d
−βb

)
|δj |
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Here the binomial coefficient
( ‖S‖
k

)
bounds the choice of irregu-

lar cells of the dual of the boundary layer while the factor 2(2d−1)k2‖S‖−k
bounds the numbers of contours with ‖S‖ columns and k irregular cells;
the notation sα �B∗

01 means that a (d − 2)–cell of the boundary of the
(d−1)–cell sα belongs to the boundary E(B∗

01). Then

∑
�:supp�=S

�(�)qe‖�‖ �
∑

0�k�‖S‖

( ‖S‖
k

)
2(2d−1)k2‖S‖−kq− 1−βb

2(d−1) k

×
∑

n�2‖S‖

(
(d−1)‖S‖

n

) ∑
m1+...+mn�‖S‖−k

n∏
j=1

(
νdq

1
d
−βb
)mj

(A.15)

Here the binomial coefficient
(
(d−1)‖S‖

n

)
bounds the choice for the

components δ1, . . . , δn of Yb to hit the boundary layer at s1, . . . , sn. The
above inequality yields

∑
�:supp�=S

�(�)qe‖�‖ �
∑

0�k�‖S‖

( ‖S‖
k

)
2(2d−1)k2‖S‖−kq− 1−βb

2(d−1) k

×
∑

n�2‖S‖

(
(d−1)‖S‖

n

) ∑
m�‖S‖−k

(
2νdq

1
d
−βb

)m
�

∑
0�k�‖S‖

( ‖S‖
k

)
2(2d−1)k2‖S‖−kq− 1−βb

2(d−1) k

×
(

2νdq
−
(

1
d
−βb

))‖S‖−k 2(d−1)‖S‖

1−2νdq
1
d
−βb

(A.16)

that gives the inequality of the lemma.

We now turn to the general case of contours with non empty poly-
mers and first give a bound on the activity ψ(γ ) of polymers.

Lemma A.3. Assume that βb > 1
d

, and cν2
dq

− 1
d
−βb�1 with c=8e(e−

1)c0 and νd = (2d)2, then

|ψ (γ )|�
(
cν2
dq

1
d
−βb

)|γ |
(A.17)
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Proof. Let us first recall the definition (2.25): ψ(γ ) ≡ ∑
A:suppA=γ

ω(A) where the weights of aggregates are defined by (see (2.22) and
(2.23)): ω(A)=∏γ∈A(e−(γ )−1). By Theorem 2.1 we know that |(γ )|�(
ec0νdq

1
d
−βb

)|γ |
(�1) for q large enough. Since for any |x|�1,

∣∣e−x −1
∣∣�

(e−1) |x|, we have

|�(γ )|=
∣∣∣e−(γ )−1

∣∣∣�(e−1) |(γ )|�
(
(e−1)ec0νdq

1
d
−βb

)|γ | ≡ e−σ |γ |

(A.18)

Then, ∑
A:suppA=γ

|ω(A)| =
∑
n�1

∑
γ1,... ,γn :

supp {γ1,... ,γn}=γ

n∏
j=1

∣∣�(γj )∣∣
�
∑
n�1

2|γ | ∑
γ1�s1,... ,γn�sn :

supp {γ1,... ,γn}=γ

n∏
j=1

e−σ |γj |

�
∑
n�1

2|γ | ∑
m1,... ,mn :

m1+...+mn�|γ |

n∏
j=1

(
νde

−σ )mj
�
∑
n�1

∑
m1,... ,mn :

m1+...+mn�|γ |

n∏
j=1

(
2νde−σ

)mj (A.19)

Here, we used as in the proof of Theorem 2.1 that the number of
polymers of length m containing a given bond or a given vertex is less
than νmd ; the term 2|γ | bounds the combinatoric choice of the cells sj ∈γj ,
because γ being connected, it contains n−1 such intersecting cells (see ref.
14).

We put k=m1 + · · ·+mn and notice that there are at most
(
k

n−1

)
such numbers to get∑

A:suppA=γ
|ω(A)| =

∑
1�n�k

∑
k�|γ |

(
k

n−1

)(
2νde−σ

)k
�
∑
k�|γ |

(
4νde−σ

)k =
∑
k�|γ |

( c
2
ν2
dq

1
d
−βb

)k
� 1

1− c
2ν

2
dq

− 1
d
+βb

( c
2
ν2
dq

1
d
−βb

)|γ |
(A.20)
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provided that c
2ν

2
dq

1
d
−βb < 1. The lemma then follows by assuming that

c
2ν

2
dq

1
d
−βb� 1

2 .

We finally turn to the Proof of Proposition 3.2
Consider a contour � = {

supp�, X̂�, Ŷ �
}

and as above the decom-
position X�= X̂�s ∪ Ẑ�b ∪ Ŷ �b . Consider also the union T̂b= Ŷ �b ∪ Ŷ �. Notice
that the set T̂ = X̂�s ∪ Ẑ�b ∪ T̂b is a family of hydras and there are at most
3|T̂b| contours corresponding to this family: this is because a (d − 1)–cell
in T̂b may be occupied either by Ŷ �b or by Ŷ � or by both. Let

∣∣̃�(T̂ )∣∣= ∑
�:Ŷ �b ∪Ŷ �=T̂

∣∣�(T̂ )∣∣ (A.21)

The above remark on the number of contours associated to T̂ and
Lemma A.3 imply

∣∣̃�(T̂ )∣∣qe‖�‖ � q
−|I0(�)|

2(d−1)

(
3 sup

{
q

1
d
−βb , cν2

dq
1
d
−βb

})|T̂b|
� q

−|I0(�)|
2(d−1)

(
3cν2

dq
1
d
−βb

)|T̂b|
(A.22)

The rest of the proof is then analog to that of Lemma A.2 starting
from Lemma A.3 and replacing q

1
d
−βb by 3cν2

dq
1
d
−βb . It gives

∑
�:supp�=S

|�(�)|qe‖�‖

�
(

2(3d−2)q
− 1−βb

2(d−1) +3c2d+1ν3
dq

1
d
−βb

)‖S‖ 1

1−6cν3
dq

1
d
−βb

(A.23)

provided 6cν3
dq

1
d
−βb <1 and ends the proof of the proposition.
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